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Abstract 

 
Facial wrinkles are widely used to evaluate skin condition or aging for various fields such as 
skin diagnosis, plastic surgery consultations, and cosmetic recommendations. In order to 
effectively process facial wrinkles in facial image analysis, accurate wrinkle segmentation is 
required to identify wrinkled regions. Existing deep learning-based methods have difficulty 
segmenting fine wrinkles due to insufficient wrinkle data and the imbalance between wrinkle 
and non-wrinkle data. Therefore, in this paper, we propose a new facial wrinkle segmentation 
method based on a UNet++ model. Specifically, we construct a new facial wrinkle dataset by 
manually annotating fine wrinkles across the entire face. We then extract only the skin region 
from the facial image using a facial landmark point extractor. Lastly, we train the UNet++ 
model using both dice loss and focal loss to alleviate the class imbalance problem. To validate 
the effectiveness of the proposed method, we conduct comprehensive experiments using our 
facial wrinkle dataset. The experimental results showed that the proposed method was superior 
to the latest wrinkle segmentation method by 9.77%p and 10.04%p in IoU and F1 score, 
respectively. 
 
 
Keywords: Artificial Intelligence, Face image analysis, Face wrinkle segmentation, Image 
segmentation, Wrinkle dataset 
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1. Introduction 

Facial wrinkles appear in the form of fine lines or creases on the skin of the human face [1]. 
These wrinkles are a natural sign of aging, but they are also affected by many other factors, 
including sun exposure, smoking, and changes in weight [2,3]. Wrinkles are one of the key 
targets in facial analysis because they are used as the basis for evaluating skin aging or offering 
skin and beauty-related recommendations [4]. Wrinkles are a particularly useful visual 
indicator of aging because they reflect changes in skin elasticity, collagen levels, and overall 
tissue integrity. Therefore, accurate analysis of facial wrinkles can be used as the foundation 
for the objective and effective assessment of the efficacy of various cosmetic treatments and 
skincare interventions.  

In facial image analysis, a variety of facial wrinkle segmentation methods have been 
proposed [5-7], which can be broadly divided into traditional image processing and deep 
learning-based approaches. Traditional image processing-based methods mostly rely on 
handcrafted features and rule-based algorithms [8-10]. While these methods have 
demonstrated effective wrinkle segmentation performance for preprocessed facial images, 
they have limitations in detecting complex and diverse wrinkle patterns. On the other hand, 
deep learning-based methods demonstrated remarkable segmentation performance across 
various image processing domains because they can learn intricate features from data [11-13]. 
Consequently, there has been a recent surge in studies employing these approaches for accurate 
wrinkle segmentation [14-17]. Nevertheless, it remains difficult to construct effective deep 
learning-based wrinkle segmentation models due to the lack of facial wrinkle data and the 
class imbalance between wrinkles and other facial features. In particular, the wrinkle class 
imbalance often causes models to focus on areas other than wrinkles, which account for most 
of a face image, resulting in inaccurate predictions due to overfitting. 

In this paper, we propose a novel facial wrinkle segmentation scheme to overcome these 
problems. In particular, we construct a new facial wrinkle dataset by manually annotating fine 
wrinkles in facial images from a known face dataset. We then extract regions of interest where 
wrinkles appear in the facial images using a facial landmark point extractor. Finally, we train 
a UNet++ model [18] using both dice loss [19] and focal loss [20] to alleviate the imbalance 
between the wrinkles and non-wrinkle elements. Dice loss and focal loss punish false 
predictions and simultaneously down-weigh non-wrinkle elements while concentrating on the 
wrinkles. To demonstrate the effectiveness of the proposed scheme, we perform comparative 
experiments using our wrinkle dataset. 

The structure of this paper is as follows. Section 2 provides a comprehensive overview of 
previous research on wrinkle segmentation. In Section 3, our proposed method is described, 
while Section 4 summarizes its performance in a series of comparative experiments. Finally, 
Section 5 presents the conclusions of our paper. 

2. Related Works 
Facial wrinkle segmentation is a pixel-level classification task for detailed representation of 
facial wrinkles. It involves identifying and isolating regions in facial images that show fine 
lines, creases, and textural irregularities. In this section, we summarize previous studies on 
facial wrinkle segmentation by categorizing them into image processing-based and deep 
learning-based approaches. We examine their strengths and limitations and briefly outline how 
our proposed method overcomes these limitations. 
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2.1 Image Processing-based Wrinkle Segmentation 
Image processing-based facial wrinkle segmentation methods detect wrinkle patterns in facial 
images using predefined image filters. For instance, Batool et al. [8] used Gabor filter banks 
[21] to highlight discontinuities in skin texture and exploited the image morphology to localize 
wrinkle shapes. In addition, Ng et al. [9] proposed a hybrid Hessian filter (HHF) based on 
directional gradients and a ridge-valley Gaussian kernel and developed Hessian line tracking 
(HLT) [5] for facial wrinkle segmentation using HHF. Similarly, Yap et al. [10] created a 
facial wrinkle annotator based on HHF and showed that it can segment both fine and coarse 
wrinkles. However, while these image processing-based methods can effectively segment 
wrinkles, it is difficult to optimize their parameters due to the wide range of image capturing 
conditions, including differences in lighting and camera angles.  

2.2 Deep Learning-based Facial Wrinkle Segmentation 
Recently, deep learning-based methods have been proposed that are robust to changes in image 
conditions by directly learning the wrinkle patterns of facial images. Li et al. [15] proposed a 
nasolabial fold segmentation method that combines an object detection network with a 
semantic segmentation network. The nasolabial folds are the two skin folds that run from each 
side of the nose to the corners of the mouth. They adopted faster region-based convolutional 
neural networks (Faster R-CNNs) [22] to detect the nasolabial region in whole face images. 
They then used a global convolution network (GCN) [23] for nasolabial fold segmentation. 
Similarly, Umirzakova and Whangbo [14] proposed a method for nasolabial folds 
segmentation in whole face images using a nested CNN. They incorporated attention blocks 
within skip connections at multiple scales to address the imbalanced spatial size of the 
intermediate feature maps. 

Other studies have looked at segmenting wrinkles around the forehead and eyes. For 
example, Kim et al. [16] introduced a new training strategy for segmenting wrinkles in facial 
images around the forehead and eyes. To generate wrinkle label data, they augmented a 
roughly labeled wrinkle data by multiplying a texture map extracted using a Gaussian filter 
and adaptive thresholding [24]. They then trained a U-Net model [25] to segment wrinkles in 
around the forehead and eyes using the augmented wrinkle labels. As a follow-up study, they 
also proposed a method to simultaneously detect areas of wrinkles and pores using this 
learning strategy [17]. These deep learning-based wrinkle segmentation methods have 
demonstrated good performance and have been employed in various research scenarios. For 
example, these methods have been used to extract wrinkle regions from facial images for 
seamless wrinkle removal through inpainting [26], and to detect wrinkles in the forehead area 
to assess the need for filler injections [7].  

However, existing deep learning-based wrinkle segmentation methods are limited to 
specific facial regions, such as the forehead, eyes, and nasolabial folds, due to the challenges 
and high costs associated with creating facial wrinkle datasets. Moreover, expanding the target 
area for wrinkle segmentation significantly increases the ratio of wrinkles to non-wrinkles, 
leading to a data imbalance that degrades model performance. To mitigate these issues, we 
manually annotated ground truth wrinkles on whole face images and isolated the skin regions 
from the face images to minimize the non-wrinkle elements. We also used dice loss and focal 
loss to train our model to address the data imbalance problem. 

 
 

 
 



2336                                                       Hyeonwoo Kim et al.: Automated Facial Wrinkle Segmentation Scheme Using UNet++ 

 

Fig. 1. Overview of the proposed facial wrinkle segmentation method. 
 

3. Methodology 
Fig. 1 presents an overview of the proposed facial wrinkle segmentation method. It consists 
of two steps: (1) extracting skin regions from face images, and (2) segmenting facial wrinkles 
using a UNet++ model with dice loss and focal loss. Before presenting a detailed description 
of each component, we first briefly describe the facial wrinkle dataset we constructed for 
model training and experiments. 
 

 
 

Fig. 2. Samples of our wrinkle dataset. 
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3.1 Construction of the Facial Wrinkle Dataset 
Because there are no public facial wrinkle datasets containing fine wrinkles, we created a new 
facial wrinkle dataset by manually annotating wrinkles on facial images using the public facial 
image dataset Flickr-Faces-HQ (FFHQ) [27] and used it to train our wrinkle segmentation 
model. FFHQ contains 70,000 high-quality face images. From the dataset, we selected 1,000 
face images covering a diverse range of ages and carefully annotated the facial wrinkles, to 
capture various shapes, sizes, and complexities. Fig. 2 shows examples of original face images 
and their wrinkle annotations. The wrinkle annotation results were used as the ground truth in 
model training and evaluation. Our wrinkle dataset is available at the website 
https://github.com/jun01pd2015/wrinkle_dataset. 

3.2 Skin Region Extraction 
In this step, we extracted only the skin regions from the facial images to focus on the wrinkle 
segmentation of facial skin. To represent only the regions where wrinkles may appear, we 
isolated the skin area from each face image by the removing landmarks and background from 
the image. Fig. 3 presents the steps for skin region extraction. A face mesh consisting of 468 
facial landmark points was first constructed from the face image using a face landmark 
extractor [28,29]. A facial skin mask representing only the skin area was created by removing 
areas containing the eyes, nose, mouth, and background from the face image based on the 
extracted facial landmark points. Finally, a facial skin image was constructed from the original 
face image by multiplying the original face image with the skin mask. By using only skin 
regions as input, our facial wrinkle segmentation model focused more on learning wrinkle 
patterns without the noise generated by non-wrinkle elements. 
 

 
Fig. 3. Skin region extraction process. 

 

3.3 Facial Wrinkle Segmentation Model 

3.3.1 Model Architecture 
The proposed model for facial wrinkle segmentation is based on UNet++ [18]. UNet++ is an 
extension of the U-Net [25] architecture commonly employed in medical image segmentation 
tasks. U-Net consists of an encoder and a decoder. The encoder extracts low-level features 
from input images, and the decoder utilizes these features to generate the desired output. U-
Net incorporates skip connections to transmit the output from each encoder layer to the 
corresponding decoder layer to minimize information loss. UNet++ greatly expands these skip 
connections by adding iterative convolution blocks to reduce the semantic differences between 
the feature maps of the encoder subnetwork and the decoder subnetwork. UNet++ also 
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introduces deep supervision [30] to address the gradient vanishing problem by enabling direct 
weight updates based on the gradient of the intermediate layer. Since deep supervision 
considers the outputs of both the last layer and intermediate layers in the loss calculation, it 
integrates feature maps at multiple resolutions, improving overall network stability and 
accuracy of capturing intricate patterns and multi-scale structures. For the UNet++ encoder, 
we adopt ResNeXt-50 [31] as the backbone network. In the wrinkle segmentation, the encoder 
down-samples skin region images to extract wrinkle feature maps with contextual information. 
The down-sampled wrinkle feature maps are then propagated to the corresponding layer of 
sub-networks through densely nested skip pathways. Finally, the decoder up-samples feature 
maps from the corresponding layer of sub-networks to generate wrinkle masks. 

3.3.2 Loss Function 
Facial wrinkles usually occur in specific regions, such as around the eyes or mouth. As a result, 
wrinkle regions account for a significantly lower portion of the entire face compared to the 
region without wrinkles. This data imbalance can bias the model towards the higher-proportion 
classes during training, leading to a poor performance. The use of cross-entropy loss, which 
computes classification loss at the pixel level, renders the model particularly susceptible to 
this type of data imbalance. To solve this problem, we use two loss functions: dice loss [19] 
and focal loss [20]. Dice loss penalizes incorrect predictions, while focal loss down-weights 
non-wrinkle elements and focuses on wrinkle areas. Dice loss is a region-based loss that 
quantifies the similarity between the predicted segmentation mask and the ground truth mask, 
highlighting the overlapping regions. This loss, which is defined using (1), effectively 
alleviates the class imbalance by punishing incorrect predictions.  
 

𝐿𝐿𝐷𝐷(𝑝𝑝, 𝑞𝑞) =  1 −
2 × ∑ (𝑝𝑝𝑖𝑖 × 𝑞𝑞𝑖𝑖)𝐻𝐻×𝑊𝑊

𝑖𝑖=1
∑ 𝑝𝑝𝑖𝑖2𝐻𝐻×𝑊𝑊
𝑖𝑖=1 +  ∑ 𝑞𝑞𝑖𝑖2𝐻𝐻×𝑊𝑊

𝑖𝑖=1
 , (1) 

 
where p and q denote the predicted mask and ground truth mask, respectively, while H and W 
represent the height and width of the input image, respectively.  

 
Focal loss is a variation of standard cross entropy loss that is designed to reduce the relative 

loss for well-classified examples and increase the relative loss for difficult or misclassified 
examples. It enhances minority class instance detection and mitigates learning bias towards 
the majority class by concentrating on challenging examples. In facial wrinkle segmentation, 
non-wrinkle elements are easy to distinguish (i.e., easy negatives), but wrinkles are difficult 
to identify (i.e., hard positives). Therefore, focal loss assigns low weights to non-wrinkle 
elements and high weights to wrinkle elements during training. Focal loss is defined as shown 
in (2): 
 

𝐿𝐿𝐹𝐹(𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜) =  �
−∑ 𝛼𝛼(1 − 𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑖𝑖)𝛾𝛾 log(𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑖𝑖)𝐻𝐻×𝑊𝑊

𝑖𝑖=1 ,        𝑦𝑦 =  1 (𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)
−∑ (1 − 𝛼𝛼)𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑖𝑖

𝛾𝛾 log(1 − 𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑖𝑖)𝐻𝐻×𝑊𝑊
𝑖𝑖=1 ,     𝑦𝑦 =  0 (𝑛𝑛𝑜𝑜𝑜𝑜_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤)

 ,   (2) 

 
where α is the weighting factor, γ is the focusing parameter, and prob represents the predicted 
probability of the correct class. In the present study, we set the weighting factor to 0.75 and 
the focusing parameter to 2, following the environmental setting in [20]. 
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4. Experiments 

4.1 Environmental Setup 
To evaluate the performance of the proposed scheme, we performed various experiments using 
our wrinkle dataset. In the experiments, we split the dataset into training and test datasets at a 
ratio of 9:1. Our segmentation method was implemented with the Pytorch framework [32]. We 
implemented the UNet++ [18] architecture with ResNeXt-50 [31] and trained it over 500 
epochs using the Adam [33] optimizer with a learning rate of 0.0001. During the training 
process, the input image was resized to 512×512 and augmented with random horizontal 
flipping and random rotating from –45° to 45° to prevent overfitting. In addition, we set the 
threshold probability of the segmentation map to 0.5. All experiments were conducted on a 
Nvidia Titan RTX gpu. We reported the highest performance observed within an acceptable 
training period for each experiment. 

4.2 Performance Evaluation 
In this section, we qualitatively and quantitatively compared the proposed method with 
existing image processing-based methods [8,10] and a deep learning method [26]. First, Fig. 
4 shows their qualitative comparison results. The proposed model performed much better than 
other compared methods in terms of wrinkle segmentation, accurately reproducing the 
wrinkles of the ground truth while suppressing the reproduction of non-wrinkle elements. This 
indicates that our model is capable of more accurately and robustly learning wrinkle patterns. 
In contrast, the traditional deep learning method often segmented non-wrinkle elements as 
wrinkles, and the image processing-based methods exhibited a poor performance in 
segmenting all facial wrinkles. In particular, they detected both non-wrinkle elements and 
thick edges or ridges as wrinkles. 
 

 
Fig. 4. Qualitative comparisons of facial wrinkle segmentation methods. 
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Next, we use a variety of metrics, including pixel accuracy, intersection over union (IoU), 
sensitivity, precision, F1 score, and specificity to quantitatively compare the efficacy and 
accuracy of wrinkle segmentation methods. Pixel accuracy measures the number of pixels 
correctly classified as wrinkles or non-wrinkles as a proportion of the total number of pixels. 
It can be defined using (3): 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 
, (3) 

 
where TP and TN are the number of true positives (correctly identified wrinkle pixels) and 

true negatives (non-wrinkle pixels correctly identified), respectively, and FP and FN are the 
number of false positives (non-wrinkle pixels incorrectly classified as wrinkle) and false 
negatives (wrinkle pixels incorrectly classified as non-wrinkle), respectively. IoU is widely 
used in segmentation to evaluate the performance by measuring the overlap between the 
predicted area and the actual area (i.e., the ground truth). IoU is calculated using (4): 
 

𝐼𝐼𝐼𝐼𝐼𝐼 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 (4) 

 
Eq. (4) measures the relationship between correctly predicted object pixels and the total set 

of actual and predicted pixels. The IoU ranges from 0 and 1, where 1 indicates a perfect overlap 
between the predicted and actual areas, and 0 indicates no overlap. Sensitivity, defined by (5), 
represents the proportion of actual wrinkle pixels that are correctly identified as winkles, 
highlighting the model's ability to detect target pixels. The metric is defined as 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 (5) 

 
Precision accesses the proportion of predicted wrinkle pixels that are correctly classified, 

reflecting the accuracy of a model in identifying true wrinkle regions without over-
segmentation. The metric is defined as shown in (6): 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 (6) 

 
The F1 score synthesizes the balance between sensitivity and precision, emphasizing the 

accuracy of correctly identified wrinkle pixels. The metric is defined using (7): 
 

𝐹𝐹1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  
2 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

=
2𝑇𝑇𝑇𝑇

2𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 (7) 

 
Specificity calculates the proportion of correctly identified non-wrinkle pixels, indicating a 

model's capability to accurately exclude non-relevant areas. This metric is defined as 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 (8) 
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Table 1. Quantitative comparison of wrinkle segmentation methods. 
Segmentation 

methods 
Pixel 

accuracy IoU Sensitivity Precision F1 score Specificity 

Batool et al. [8] 0.9623 0.0818 0.2628 0.1262 0.1479 0.9728 
Yap et al. [10] 0.979 0.101 0.1737 0.2275 0.181 0.9909 

Sanchez et al. [26] 0.9889 0.3517 0.4289 0.6726 0.5153 0.997 
Ours 0.9896 0.4494 0.6019 0.6435 0.6157 0.9952 

 
Table 1 summarizes the results comparing our proposed method with other wrinkle 

segmentation methods from Batool et al. [8], Yap et al. [10], and Sanchez et al. [26]. Our 
method achieved the highest pixel accuracy (0.9896), indicating that it correctly classified 
pixels as wrinkles or non-wrinkles. Sanchez et al.’s model [26] followed closely behind with 
0.9889, while Batool et al. [8] and Yap et al. [10] exhibited a lower accuracy. Our method was 
also the best-performing approach in terms of IoU with 0.4494, significantly outperforming 
the other methods. This suggests that our method was superior in accurately delineating the 
wrinkle regions. The low IoU of Batool et al. [8] reflected a strong discrepancy between the 
predicted and actual wrinkle regions. In terms of sensitivity and precision, our method 
demonstrated a balanced performance (0.6019 and 0.6435, respectively), representing the 
effective identification of wrinkle pixels while maintaining a lower rate of false positives. 
Sanchez et al. [26] achieved a higher precision (0.6726), but our method achieved a better 
balance between detecting most wrinkles (i.e., sensitivity) and accurately classifying wrinkle 
pixels (i.e., precision). Our method also achieved the highest F1 score (0.6157), which 
balanced sensitivity and precision, representing a superior overall performance in terms of 
wrinkle detection accuracy. Finally, while our method demonstrated a slightly lower 
specificity (0.9952) compared to Sanchez et al. [26] (0.997) and Yap et al. [10] (0.9909), it 
remained high, indicating a strong ability to correctly identify non-wrinkle regions. 

 
Table 2. Quantitative comparison of loss function. 

Loss 
functions 

Pixel 
accuracy IoU Sensitivity Precision F1 score Specificity 

BCE 0.9894 0.3363 0.3801 0.7602 0.4966 0.9981 
Dice 0.9902 0.4358 0.5366 0.7003 0.6021 0.9968 
Focal 0.9899 0.4148 0.5041 0.7025 0.5816 0.997 

BCE + Focal 0.9901 0.3684 0.4091 0.7868 0.5309 0.9984 
BCE + Dice 0.9902 0.4436 0.5669 0.6845 0.6151 0.9963 
Dice + Focal 0.9896 0.4494 0.6019 0.6435 0.6157 0.9952 

BCE + Dice + Focal 0.9899 0.4386 0.5584 0.6725 0.6044 0.9962 
 

4.3 Comparative Analysis of Loss Functions 
This section summarizes the impact of the loss function on model performance by training the 
model with various combinations of binary cross-entropy (BCE), dice loss, and focal loss. 
Table 2 presents a summary of the results for multiple metrics for each loss function 
combination. The Dice + Focal combination achieved the highest sensitivity (0.6019), 
demonstrating its superior ability to accurately identify wrinkle regions. This high sensitivity 
is particularly crucial in datasets with a class imbalance because failing to detect the minority 
class (i.e., wrinkles in the present study) can significantly affect a model’s utility. Moreover, 
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with an IoU of 0.4494, the Dice + Focal combination outperformed the other configurations. 
IoU directly measures the accuracy in the context of a spatial imbalance by evaluating the 
overlap between predicted and actual segmentation areas, making it an important metric for 
segmentation tasks. Although pixel accuracy and specificity were slightly lower with the Dice 
+ Focal combination than for the other loss function combinations, they remained high. On 
the other hand, the Dice + Focal combination was considerably lower for precision than the 
BCE + Focal combination, which reached 0.7868. However, the Dice + Focal combination 
had the highest F1 score (0.6157), demonstrating its effectiveness in maintaining a balance 
between correctly identifying wrinkle regions and minimizing over-segmentation. This 
analysis highlights the importance of choosing the appropriate loss function combination for 
handling specific challenges, such as the class imbalance in wrinkle segmentation tasks. Its 
outstanding performance in terms of the F1 score, sensitivity, and IoU suggests that the 
combination of dice loss and focal loss was the most suitable for training wrinkle segmentation 
models. 

5. Conclusion 
In this paper, we proposed an automated facial wrinkle segmentation scheme that can 
effectively segment wrinkles over the entire face. To achieve this, we constructed a new facial 
wrinkle dataset with deep and shallow wrinkles for various age groups. We also extracted skin 
regions from facial images to focus on the wrinkle patterns of facial skin. To overcome the 
class imbalance between wrinkles and non-wrinkle elements, we used both dice loss and focal 
loss to train the UNet++ model. Comparative experiments using our wrinkle dataset 
demonstrated that our proposed method significantly outperformed existing facial wrinkle 
segmentation methods. In future work, we plan to expand our research into facial skin analysis. 
This will include identifying wrinkle patterns across various demographic features, including 
age, race, and gender, using the proposed method. 
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